自然语言处理的应用场景

现如今,人工智能已经成为大众耳熟能详的词汇,而自然语言处理却很少有人了解。自然语言处理(Natural Language Processing,NLP)属于人工智能的一个子领域,是指用计算机对自然语言的形、音、义等信息进行处理,即对字、词、句、篇章的输入、输出、识别、分析、理解、生成等的操作和加工。它对计算机和人类的交互方式有许多重要的影响。

 

人类语言经过数千年的发展,已经成为一种微妙的交流形式,承载着丰富的信息,这些信息往往超越语言本身。自然语言处理将成为填补人类通信与数字数据鸿沟的一项重要技术。下面就介绍一下自然语言处理的几个常见应用:

 1、机器翻译

随着通信技术与互联网技术的飞速发展、信息的急剧增加以及国际联系愈加紧密,让世界上所有人都能跨越语言障碍获取信息的挑战已经超出了人类翻译的能力范围。

机器翻译因其效率高、成本低满足了全球各国多语言信息快速翻译的需求。机器翻译属于自然语言信息处理的一个分支,能够将一种自然语言自动生成另一种自然语言又无需人类帮助的计算机系统。目前,谷歌翻译、百度翻译、搜狗翻译等人工智能行业巨头推出的翻译平台逐渐凭借其翻译过程的高效性和准确性占据了翻译行业的主导地位。

 2、打击垃圾邮件

当前,垃圾邮件过滤器已成为抵御垃圾邮件问题的第一道防线。不过,有许多人在使用电子邮件时遇到过这些问题:不需要的电子邮件仍然被接收,或者重要的电子邮件被过滤掉。事实上,判断一封邮件是否是垃圾邮件,首先用到的方法是“关键词过滤”,如果邮件存在常见的垃圾邮件关键词,就判定为垃圾邮件。但这种方法效果很不理想,一是正常邮件中也可能有这些关键词,非常容易误判,二是将关键词进行变形,就很容易规避关键词过滤。

 

自然语言处理通过分析邮件中的文本内容,能够相对准确地判断邮件是否为垃圾邮件。目前,贝叶斯(Bayesian)垃圾邮件过滤是备受关注的技术之一,它通过学习大量的垃圾邮件和非垃圾邮件,收集邮件中的特征词生成垃圾词库和非垃圾词库,然后根据这些词库的统计频数计算邮件属于垃圾邮件的概率,以此来进行判定。

 3、信息提取

金融市场中的许多重要决策正日益脱离人类的监督和控制。算法交易正变得越来越流行,这是一种完全由技术控制的金融投资形式。但是,这些财务决策中的许多都受到新闻的影响。因此,自然语言处理的一个主要任务是获取这些明文公告,并以一种可被纳入算法交易决策的格式提取相关信息。例如,公司之间合并的消息可能会对交易决策产生重大影响,将合并细节(包括参与者、收购价格)纳入到交易算法中,这或将带来数百万美元的利润影响。

 

 4、文本情感分析

在数字时代,信息过载是一个真实的现象,我们获取知识和信息的能力已经远远超过了我们理解它的能力。并且,这一趋势丝毫没有放缓的迹象,因此总结文档和信息含义的能力变得越来越重要。情感分析作为一种常见的自然语言处理方法的应用,可以让我们能够从大量数据中识别和吸收相关信息,而且还可以理解更深层次的含义。比如,企业分析消费者对产品的反馈信息,或者检测在线评论中的差评信息等。

 5、自动问答

随着互联网的快速发展,网络信息量不断增加,人们需要获取更加精确的信息。传统的搜索引擎技术已经不能满足人们越来越高的需求,而自动问答技术成为了解决这一问题的有效手段。自动问答是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务,在回答用户问题时,首先要正确理解用户所提出的问题,抽取其中关键的信息,在已有的语料库或者知识库中进行检索、匹配,将获取的答案反馈给用户。

6、个性化推荐

自然语言处理可以依据大数据和历史行为记录,学习出用户的兴趣爱好,预测出用户对给定物品的评分或偏好,实现对用户意图的精准理解,同时对语言进行匹配计算,实现精准匹配。例如,在新闻服务领域,通过用户阅读的内容、时长、评论等偏好,以及社交网络甚至是所使用的移动设备型号等,综合分析用户所关注的信息源及核心词汇,进行专业的细化分析,从而进行新闻推送,实现新闻的个人定制服务,最终提升用户粘性。

写在最后:

自然语言处理的目标是弥补人类交流(自然语言)与计算机理解(机器语言)之间的差距,最终实现计算机在理解自然语言上像人类一样智能。未来,自然语言处理的发展将使人工智能可以逐渐面对更加复杂的情况、解决更多的问题,也必将为我们带来一个更加智能化的时代。

相关推荐
<p> 本课程<span>隶属于自然语言处理</span>(NLP)<span>实战系列。自然语言处理</span>(NLP)<span>是数据科学里一个分支,它主要覆盖内容是:以一种智能与高效方式,对文本数据进行系统化分析、理解与信息提取过程。通过使用</span>NLP以及它组件,我们可以管理非常大块文本数据,或者执行大量自动化任务,并且解决各式各样问题,如自动摘要,机器翻译,命名实体识别,关系提取,情感分析,语音识别,以及主题分割等等。 </p> <p> <span>一般情况下一个初级</span>NLP工程师工资从15<span>万</span>-35<span>万不等,所以掌握</span>NLP技术,对于人工智能学习者来讲是非常关键一个环节。 </p> <p> <br /> </p> <p> <br /> </p> <p> <span style="background-color:#FFE500;">【超实用课程内容】</span> </p> <p> <span>课程从自然语言处理基本概念与基本任务出发,对目前主流自然语言处理应用进行全面细致讲解,</span><span>包括文本分类,文本摘要提取,文本相似度,文本情感分析,文本特征提取等,同时算法方面包括经典算法与深度学习算法结合,例如</span><span>LSTM,BiLSTM等,并结合京东电商评论分类、豆瓣电影摘要提取、今日头条舆情挖掘、饿了么情感分析等过个案例,帮助大家熟悉自然语言处理工程师在工作中会接触到</span><span>常见应用实施基本实施流程,从</span><span>0-1入门变成自然语言处理研发工程师。</span> </p> <p style="color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <br /> </p> <p style="color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="background-color:#FFE500;">【课程如何观看?】</span> </p> <p style="color:#3A4151;font-size:14px;background-color:#FFFFFF;"> PC端:<a href="https://edu.csdn.net/course/detail/26277"></a><a href="https://edu.csdn.net/course/detail/25649">https://edu.csdn.net/course/detail/25649</a> </p> <p style="color:#3A4151;font-size:14px;background-color:#FFFFFF;"> 移动端:CSDN 学院APP(注意不是CSDN APP哦) </p> <p style="color:#3A4151;font-size:14px;background-color:#FFFFFF;"> 本课程为录播课,课程2年有效观看时长,大家可以抓紧时间学习后一起讨论哦~ </p> <p> <br /> </p> <p> <strong><span style="background-color:#FFE500;">【学员专</span><span style="background-color:#FFE500;">享增值服务】</span></strong> </p> <p> 源码开放 </p> <p> 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 </p> <p> 下载方式:电脑登录<a href="https://edu.csdn.net/course/detail/26277"></a><a href="https://edu.csdn.net/course/detail/25649">https://edu.csdn.net/course/detail/25649</a>,点击右下方课程资料、代码、课件等打包下载 </p> <p> <br /> </p> <p> 通过第二课时下载材料<span></span> </p> <p> <br /> </p> <p> <br /> </p>
<p style="font-size:medium;"> <span style="font-size:18px;color:#FF0000;">课程目标</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">学习完本门课程,您将对自然语言处理技术有更深入了解, </span><span style="font-size:18px;">掌握基于深度学习情感分析方法;课程基于</span><span style="font-size:18px;">PyTorch</span><span style="font-size:18px;">主流框架实现,其中涉及深度学习主流框架</span><span style="font-size:18px;">LSTM</span><span style="font-size:18px;">模型以及自然语言处理词向量;</span><span style="font-size:18px;">彻底掌握</span><span style="font-size:18px;">中文情感分析。</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;color:#FF0000;">适用人群</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">想要从事NLP在校学生、NLP研发工程师</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">自然语言处理从业者、深度学习爱好者</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;color:#FF0000;">课程简介</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">NLP领域热门应用,常用在舆情分析,文章分类,智能</span><span style="font-size:18px;">客服,情感分析等</span><span style="font-size:18px;">多个场景</span><span style="font-size:18px;">。情感分析作为</span><span style="font-size:18px;">自然语言处理基础技术之一</span><span style="font-size:18px;">,常被用于电商评论、舆情监控、</span><span style="font-size:18px;color:#FF0000;">微博评论情感分析</span><span style="font-size:18px;">、话题监督等领域,</span><span style="font-size:18px;">因此深入</span><span style="font-size:18px;">掌握情感分析技术</span><span style="font-size:18px;">,是作为自然语言处理从</span><span style="font-size:18px;">业者必备技能</span><span style="font-size:18px;">,本课程以案例驱动出发,结合多个项目实战案例,覆盖多种算法,</span><span style="font-size:18px;">如</span><span style="font-size:18px;">RNN</span><span style="font-size:18px;">,</span><span style="font-size:18px;">LSTM</span><span style="font-size:18px;">等</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;color:#FF0000;">课程要求:</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(1)开发环境:python版本:Python3.7; </span><span style="font-size:18px;color:#FF0000;">torch 版本:</span><span style="font-size:18px;color:#FF0000;">1.</span><span style="font-size:18px;color:#FF0000;">3</span><span style="font-size:18px;color:#FF0000;">.0+; torch</span><span style="font-size:18px;color:#FF0000;">text</span><span style="font-size:18px;color:#FF0000;">版本</span><span style="font-size:18px;color:#FF0000;">:</span><span style="font-size:18px;color:#FF0000;">0.</span><span style="font-size:18px;color:#FF0000;">3</span><span style="font-size:18px;color:#FF0000;">.0</span><span style="font-size:18px;color:#FF0000;">+</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(2)开发工具:Pycharm;</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(3)学员基础:需要一定Python基础,及深度学习基础;</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(4)学员收货:</span><span style="font-size:18px;">掌握深度学习情感分类关键</span><span style="font-size:18px;">技术;</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(5)学员资料:内含完整程序源码和数据集;</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码。</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;"><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002100142351682.png" alt="" /><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002100143361272.png" alt="" /><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002100144109896.png" alt="" /><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002100144545929.png" alt="" /><br /></span> </p> <p style="text-align:left;font-size:medium;"> <span style="font-size:32px;">案例5-情感分析功能点</span> </p> <p style="text-align:center;font-size:medium;"> <img src="https://img-bss.csdn.net/202002131018235991.png" alt="" /></p> <p style="text-align:center;font-size:medium;"> <br /></p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><br /></span> </p>
©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页